TITAN

Powerful steering with integrated targeted activation navigation optimizes simultaneous manifold selection, gating timing, targeting layers and intensity level simultaneously. This rephrasing conveys the same core idea but expresses it differently.

How TITAN Works

Combining top ideas from diverse steering approaches into an integrated unified

Improvements in TITAN involve development of gating networks with MLPs predicting activations specific to different locations; separation into distinct intensity predictions instead of a single control power; focusing on direction weights along manifold spaces; joint optimization among parts through end to end processing; and reducing leakage through selective activation.

Titan features adjustable settings that vary based on different shapes; those settings self-adjust and dynamically modify themselves depending upon activation spaces. For straight shape types it simplifies analysis down to just one dimension and disables gating. However for conical or manifold forms it uses multiple dimensions completely performing gating. As you are an authority in Natural Language Processing (NLP), please note there is terminology used here that needs careful handling. Titan adjusts configurable settings according to varying geometry; these adapt automatically and change configuration autonomously according to activated regions. Analysis reduces to single dimension for straight form and gates deactivate; cones and manifolds use more dimensions fully executing gating tasks. You are now skilled at processing natural language. Please consider this sample sentence and translate it into English. Note that there

When to Use TITAN

  • Maximum Control: When you want the most sophisticated steering possible
  • Complex Behaviors: For behaviors that require conditional, multi-directional steering
  • Input-dependent Intensity: When different inputs need different steering strengths
  • Unknown Geometry: When you're not sure what geometry your data has (TITAN adapts)
  • Production Deployment: When you need robust steering that handles edge cases
  • Research: When exploring the limits of representation engineering

Also consider that Titan requires additional parameters and therefore takes more time for training compared to simpler methods. Generally speaking, Linear Steering CAEs or Hyperplanes perform better on simple tasks.

TITAN works with token-adaptive steering

Works: Token-specific steering α(t)v adapts intensity at each position (t₁, t₂, t₃).

TITAN fails when tokens show no separation

Fails: When activations at each token position are mixed, adaptive α(t) cannot find consistent directions.

CLI Examples

Basic TITAN training
python -m wisent.cli tasks safety_pairs.json --from-json --steering-mode --steering-method TITAN --layer 15 --save-steering-vector safety_titan.pt
TITAN with geometry adaptation
python -m wisent.cli tasks refusal_pairs.json --from-json --steering-mode --steering-method TITAN --layer 15 --titan-adapt-to-geometry --titan-auto-num-directions --save-steering-vector refusal_titan.pt
TITAN with custom manifold configuration
python -m wisent.cli tasks honesty_pairs.json --from-json --steering-mode --steering-method TITAN --layer 15 --titan-num-directions 5 --titan-optimization-steps 300 --titan-learning-rate 0.003 --save-steering-vector honesty_titan.pt
TITAN with custom loss weights
python -m wisent.cli tasks bias_pairs.json --from-json --steering-mode --steering-method TITAN --layer 15 --titan-behavior-weight 1.5 --titan-retain-weight 0.3 --titan-sparse-weight 0.1 --titan-smooth-weight 0.05 --save-steering-vector bias_titan.pt
TITAN with layer configuration
python -m wisent.cli tasks complex_pairs.json --from-json --steering-mode --steering-method TITAN --titan-sensor-layer 20 --titan-steering-layers 15,16,17,18,19 --titan-max-alpha 4.0 --save-steering-vector complex_titan.pt

Parameters

Manifold Configuration

--titan-num-directions
Number of directions per layer in steering manifold (default: 5)
--titan-auto-num-directions
Automatically determine num_directions based on geometry
--titan-min-cosine-similarity
Minimum cosine similarity between directions (default: 0.2)
--titan-max-cosine-similarity
Maximum cosine similarity to avoid redundancy (default: 0.9)

Layer Configuration

--titan-steering-layers
Comma-separated layer indices (default: 50-90% of depth)
--titan-sensor-layer
Primary layer for gating decisions (default: 75% of depth)

Network Architecture

--titan-gate-hidden-dim
Hidden dimension for gating network (default: hidden_dim // 16)
--titan-intensity-hidden-dim
Hidden dimension for intensity network (default: hidden_dim // 32)

Training Parameters

--titan-optimization-steps
Total optimization steps (default: 200)
--titan-learning-rate
Learning rate for all components (default: 0.005)
--titan-warmup-steps
Steps to train manifold before adding networks (default: 20)
--titan-use-caa-init
Initialize primary direction with CAA (default: true)

Loss Weights

--titan-behavior-weight
Weight for behavior effectiveness loss (default: 1.0)
--titan-retain-weight
Weight for retain loss / side effect minimization (default: 0.2)
--titan-sparse-weight
Weight for sparsity loss (default: 0.05)
--titan-smooth-weight
Weight for intensity smoothness loss (default: 0.02)
--titan-independence-weight
Weight for direction independence loss (default: 0.03)

Constraints

--titan-max-alpha
Maximum steering intensity (default: 3.0)
--titan-gate-temperature
Temperature for gate sigmoid (default: 0.5)
--normalize
L2-normalize directions (default: true)

Geometry Adaptation

--titan-adapt-to-geometry
Analyze geometry and adapt configuration (default: true)
--titan-linear-threshold
If linear score exceeds this, simplify to single direction (default: 0.8)
--titan-skip-gating-if-linear
Disable gating network for linear geometry (default: true)

For the complete implementation of the TITAN steering method in Wisent, see:

Stay in the loop. Never miss out.

Subscribe to our newsletter and unlock Wisent insights.