optimize-classification

Consider tuning parameter optimization across different tasks. This involves selecting the best layer, setting an appropriate detection threshold and deciding on the most effective way to aggregate tokens for a specific model. To optimize parameters uniformly across

Basic Usage
python -m wisent optimize-classification MODEL [OPTIONS]

Examples

Basic Optimization
python -m wisent optimize-classification \
  meta-llama/Llama-3.1-8B-Instruct \
  --limit 1000 \
  --optimization-metric f1
With Layer Range
python -m wisent optimize-classification \
  meta-llama/Llama-3.1-8B-Instruct \
  --layer-range 10-20 \
  --limit 500 \
  --save-classifiers
Calibration Only
# First, run calibration to estimate timing
python -m wisent optimize-classification \
  meta-llama/Llama-3.1-8B-Instruct \
  --calibrate-only \
  --calibration-file ./calibration.json
Custom Thresholds
python -m wisent optimize-classification \
  meta-llama/Llama-3.1-8B-Instruct \
  --threshold-range 0.3 0.5 0.7 0.9 \
  --aggregation-methods average final max \
  --results-file ./my_results.json

Arguments

Required

ArgumentDescription
modelModel name or path to optimize

Optimization Settings

ArgumentDefaultDescription
--limit1000Maximum samples per task
--optimization-metricf1Metric to optimize (f1, accuracy, precision, recall)
--max-time-per-task15.0Maximum time per task in minutes
--layer-rangeallLayer range to test (e.g., '10-20')

Search Space

ArgumentDefaultDescription
--aggregation-methodsaverage, final, first, max, minToken aggregation methods to test
--threshold-range0.3-0.9Detection thresholds to test

Output

ArgumentDescription
--results-fileCustom file path for saving results
--no-saveDon't save results to model config
--save-logs-jsonSave detailed optimization logs to JSON file
--save-classifiersSave best classifiers for each task (default: true)
--classifiers-dirDirectory to save classifiers

Timing Calibration

ArgumentDescription
--skip-timing-estimationSkip timing estimation
--calibration-fileFile to save/load calibration data
--calibrate-onlyOnly run calibration and exit

What Gets Optimized

  • Layer - Which model layer to extract activations from
  • Threshold - Classification decision threshold (0-1)
  • Token Aggregation - How to aggregate token-level scores (average, final, first, max, min)

Related Commands

Stay in the loop. Never miss out.

Subscribe to our newsletter and unlock Wisent insights.