agent

Engage with an autonomous agent which automatically generates and uses classifiers or steering vectors according to your query. This agent studies your directive, makes essential parts and performs quality assurance.

Basic Usage
python -m wisent agent "YOUR PROMPT" [OPTIONS]

Examples

Basic Agent Interaction
python -m wisent agent \
  "Generate a response that is more helpful and detailed" \
  --model meta-llama/Llama-3.1-8B-Instruct
With Steering Mode
python -m wisent agent \
  "Respond like a friendly expert teacher" \
  --model meta-llama/Llama-3.1-8B-Instruct \
  --steering-mode \
  --steering-method CAA \
  --steering-strength 1.5
With Quality Control
python -m wisent agent \
  "Answer questions more honestly" \
  --model meta-llama/Llama-3.1-8B-Instruct \
  --enable-quality-control \
  --max-quality-attempts 5 \
  --quality-threshold 0.3 \
  --verbose
With Time Budget
python -m wisent agent \
  "Be more concise in responses" \
  --model meta-llama/Llama-3.1-8B-Instruct \
  --time-budget 5.0 \
  --max-classifiers 3

Arguments

Required

ArgumentDescription
promptPrompt to send to the autonomous agent

Model Configuration

ArgumentDefaultDescription
--modelLlama-3.1-8B-InstructModel to use
--layerfrom configLayer to use (overrides parameter file)

Agent Settings

ArgumentDefaultDescription
--quality-threshold0.3Quality threshold for classifiers
--time-budget10.0Time budget in minutes for creating classifiers
--max-attempts3Maximum improvement attempts
--max-classifiersunlimitedMaximum classifiers to use

Steering Options

ArgumentDefaultDescription
--steering-modefalseEnable steering mode
--steering-methodCAASteering method to use
--steering-strength1.0Steering strength

Normalization

ArgumentDefaultDescription
--normalize-modefalseEnable normalization of steering vectors
--normalization-methodnoneNormalization method (none, l2_unit, l2_norm, max_norm)
--target-normNoneTarget norm for steering vectors

Quality Control

ArgumentDefaultDescription
--enable-quality-controltrueEnable quality control system
--max-quality-attempts5Maximum attempts to achieve acceptable quality
--show-parameter-reasoningfalseDisplay model's reasoning for parameter choices

How the Agent Works

  1. Analyze Prompt - Agent analyzes your prompt to understand desired behavior
  2. Create Components - Automatically creates classifiers or steering vectors
  3. Quality Check - Validates that components meet quality thresholds
  4. Apply & Generate - Applies components and generates the response
  5. Iterate if Needed - Refines components if quality is below threshold

Related Commands

Stay in the loop. Never miss out.

Subscribe to our newsletter and unlock Wisent insights.